USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

Always Remember:

(1) If f(—=x) = —f(x), the function f(x) is called an odd function.

(i)  If f(=x) = f(x), the function f(x) is called an even function.

(iii) sinnm = 0 for any integern.i.e.n=0,+1,+ 2, ...

(iv) cosnm=-1if n=41,43,415,... (odd values)

(v) cosnt =1ifn=0,+%2,+4,16 ... (even values)

(vi) ffﬂcosx dx = [sinx]™, = sin(w) — sin(—m) =0

(vii) ffﬂ sinx dx = [—cosx]*,; = —[cos(m) — cos(—n)] = —[-1 = (—1)]
(viii) ffﬂcos mxcosnxdx =0 form #n

(ix) ffn sinmxsinnxdx =0 form#n

(x) ffﬂsinmxcosnxdx =0formn=1,2,..,0

(xi) sin260 = 2sinfcosé

1+cos 26
2

(xii) cos?@ =

1—cos 26
2

(xiii) sin?6 =
(xiv) cos(A—B) =cosAcosB + sinAsinB

(xv) e =cosf+isind

(xvi) e =cosf —isinf
i6, ,—if
(xvii) cos@ = £ +2e
i6_,—i0
(xviii) sin @ = S
21
Radian - 0 n T T T
6 4 3 2
Degree — 0° 30° 45° 60° 90°
i 1 1
sinx 0 /> /\/f \/5/2 1
CcoS x 1 V3 1 1 0
/2 /ﬁ /2
tan x 0 1 1 3 oo
/3 V3
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USO5CPHY22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation
Periodic Function:

A periodic function is a function that repeats its values at regular intervals, for example, the
trigonometric functions, which repeat at intervals of 2m radians.

If f(x + p) = f(x) for every x then f (x) is called periodic function and p is called period.

)] If f(x) = sinx then
f(x+ 2m) = sin(x + 2m) = sinx = f(x)
Therefore sin x is a periodic function with period 2.

(i) Iff(x) =sin (Z%x) then
fx+D= sin(@) = sin(2$+27ﬂl> = sin(2$+ Zn) = sin(?) = f(x)

Therefore sin (?) is a periodic function with period L.

Different types of waves:

Sine

Square

Triangle

Sawtooth
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation
1. Definition and expansion of a function of Fourier series:

A Fourier series is a representation employed to express a periodic function f(x) defined in an
interval (—m, m) a linear relation between the sines and cosines of the same period.

f(x) =a¢+ a;cosx +a,cos2x + -+ a, cosnx + ---+ by sinx + b, sin 2x + --- 4+ b, sinnx + -+

(00} [00]
f(x) =ay+ Z a, cos nx + Z b,sinnx (1)
n=1 n=1
We want to determine values of the coefficients a,, a,, and b,,.

(i) To calculate a:

To determine ay, let us integrate both sides of equation (1) between limits - and . We get

Vs Y Vs Y T
f f(x) dxzaof dx+a1f cos x dx+a2f costdx+-~+anf cosnx dx + -
-1 -1 -1 -1

-1
Y Vs Y

+b1f sinx dx +b2f sin2xdx+--~+bnf sinnxdx + -+ (2)
-7 - -

As we know that

s s
fcosnxdx=f sinnxdx =0 forn=1,2,..,00 (3)
-

—T1T

In equation (2) RHS, except the first term all other terms become zero. Equation (2) becomes

f f(x)dx = aof dx = ag[x]%; = ap[r — (—m)] = ay[21] = 2ma,

1 (™ 1 ™
Gy =5 f Feodr=g f @ @

by replacing variable of integration from x to 9 to distinguish from f(x).

(ii) Todetermine a,:

Multiply both sides of equation (1) with cos nx and integrating between limits - = and , We get

Y Vs Vs Vs
f f(x)cosnxdx = a, f cosnxdx + a4 f cosx cosnx dx +a, f cos 2x cosnx dx
-7 =TT -1 -1

s s
+---+anf cosznxdx+---+b1f
-1

s
sinx cosnx dx + bzf sin 2x cosnx dx + -+
-1 -1

s
+bnf sinnxcosnxdx + -+ (5)
-

As we know that
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

s
f cosmxcosnxdx =0 form#n (6)
-1

s
f sinmxcosnxdx =0 form,n=1,2,..,00 (7)
-7
Therefore, all other terms vanish except only one term having cos? nx, equation (5) becomes

T b4
f f(x) cosnx dx = a, f cos? nx dx
o .

a, (™ 1+ cos 26
= —f (1 + cos 2nx) dx <As cos? 0 = —)
2 ), 2
_ay [ sin an]" _ay (=) + sin 2nm — sin(—2nm)
B I N L 2n

an[ 4 _I_O—O]_an2 _
2 —Z[n]—ann

s
f f(x)cosnx dx = a,m
-

a —lfnf(x)cosnx dx—lfnf(ﬁ)cosnﬂ dy (8)
L )

(iii) To determine b,,:

Multiply both sides of equation (1) with sin nx and integrating between limits - = and , We get

s s s s
f f(x)sinnxdx = a, f sinnx dx + a4 f cosxsinnx dx +a, f cos 2x sin nx dx
-1 -1 -1 -1

s s s
+ -t anf cosnxsinnxdx + -+ + blf sinx sinnxdx + b, f sin 2x sinnx dx + -+
(4 -1 -1
T
+ bnf sin?nxdx +-+  (9)
-
Therefore, all other terms vanish except only one term having sin? nx, equation (9) becomes

T T
f f(x)sinnx dx = bnf sin? nx dx
. .

1 — cos 26)

by (™ .
= —f (1 — cos 2nx) dx <As sin?f =
2 ). 2

bn
2

[ sin an]"
x —
-1

2n

_ by sin 2nm — sin(—2nm)
=2 "™ 2n
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

bn[ N 0-0 _b,12 — b
m+T—— —2[7T]—n7'[

2

Y
f f(x)sinnx dx = b,
-1

b =lfnf(x)sinnx dx=lfnf(19)sinm9 d9 (10)
o) T)_,

Substituting values of ay, a,, & b, in equation (1), we get

f(x) = %f;f(ﬁ) dd +%nz=1cosnx f:tf(ﬁ) cosnd dJI +%;sinnx fjrf(ﬂ) sinnd d¥ (11)

The expansion as shown in RHS of equation (11) is called Fourier series for f(x), in the interval
—n K x & mand ay,a, & b,, are known as Fourier’s constants for f(x).

Equation (11) may be also written as

Flx) = %f_if(ﬁ) o + %; U_Zf(ﬁ) cosn(x —9) dd| (12)

[As cos(A — B) = cos Acos B + sin Asin B]
Deduction from equation (11):

(i) If f(x) be an odd function of x i.e. f(—x) = —f(x), then first & second term of equation (11)
become zero. i.e.

1 (" 1 ("
ﬁf_nf(ﬁ) dy =0, Ef_nf(ﬁ) cosnd dd =0 (13)
In third term of equation (11) we have
1 s
f f(9)sinnY dI = Zf f@)sinny d9 (14)
-7 0

Therefore equation (11) becomes:

fx) = %Z sin nx fonf(ﬁ) sinnd d9v (15)

n=1

(ii) If f (x) be an even function of x, i.e. f(—x) = f(x) then

ff(ﬁ)dﬁzsz(ﬁ)dﬂ (16)
-1 0

fnf(ﬁ) cosnd dI = 2 fnf(ﬁ) cosnd d9 (17)
-7 0
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

fnf(ﬁ) sinnd d9 =0 (18)

~ flx) = %fonf(ﬁ) dy + %Z cos nx fonf(ﬂ) cosnd dJ (19)

n=1
Corollary 1. To find a cosine series of f(x) when 0 K x < .

Let us assume that

f(x)=ay+ Z a, cosnx (20)
n=1
Integrating both sides from 0 to 7, equation (20) becomes

ff(x)dx=aof dx = ag[x]§ = ag[n — 0] = ao[n] = maq
0 0

aozl 7Tf(x)dle nf(t?)dﬁ (21)
rtfo T Jo

Again, multiplying both sides of equation (20) by cos nx and integrating from 0 to 7, we get

s s s

cosxcosnx dx + -+ anf cos?nx dx + -+ (22)
0

Y
ff(x)cosnxdx:aof cosnxdx+a1f
0 0

0

Therefore, all other terms vanish except only one term having cos? nx, equation (22) becomes

T

Vs
f f(x)cosnx dx = anf cos? nx dx
0 0

a, (™
=—f (1 + cos2nx)dx
2 0
a, sin 2nx]" a, [ sin 2nm — sin(O)] a, 0- O] a, a,m
z[x m 1, 2 " 2n 7% G I el e

a —Efnf(x) cosnx dx —Ef”f(ﬁ) cosnd d9 (23)
"ol S
Hence,
1 (" 2 ™
f(x)=;fo f(19)d19+;r;cosnx[fo f () cosnd dﬁ] (24)

Corollary 2. To find a sine series for f(x), when 0 K x < m.

Let us assume that
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

flx) = z b, sinnx (25)
n=1

Multiply both sides of equation (25) with sin nx and integrating between limits 0 and r, We get

i

fnf(x) sinnx dx = blf
0

s
sinxsinnxdx + ---+ bnf sin? nx dx + -+ (26)
0 0

All other terms vanish except only one term having sin? nx, equation (9) becomes

T T
f f(x)sinnx dx = b, f sin® nx dx
0 0

b, (™ - 1 —cos 26
=—f (1 —cos2nx)dx (As sin 9=—)
2 J, -
_bn[ sin2nx]"_bn 0 sin 2nm — sin(0) _bn[ O—O]_bn[ ]_bnﬂ
2 T |, 72" 2n 2" T T2 E

= Efnf(x) sinnx dx —Efnf(ﬂ) sinnd d¥ (27)
= : == :

oo

flx) = %Z sin nx fnf(ﬁ) sinnd d¥ (28)
0

n=1

Corollary 3. To obtain Fourier series for function f(x) in the interval (-1, 1) with period 2,

replace x by?, equation (1) becomes

nmwx
f(x)=—+zancos—+ bnsinT
n=1 n=1
Or
nmwx
flx) = 70 Z an cos + b, smT) (29)
n=
Where

1 [ 1 nmx 1  nmx
a0=7f f(x)dx, an=7f f(x)cosT dx, bnsz f(x)smT dx (30)
-1 -1 -1
Complex Representation of a Fourier Series:

Consider a function f(t) which is periodic with a period T = %ﬂ then we can write

[ee)

f©O= ) e (1)

n=-oo
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

2n
w=—, ft+D=fO @

Here f(t) being defined in (—oo, o0). Now RHS of equation (1) being real, the coefficients of the
series on the RHS of equation (1) must be such that no imaginary terms occur.

Integrating equation (1) over 0 to 7, we have

[ee]

fo F(oydt = f [ D aneznwc] it (3

n=-—oo

(In equation (3) summation is over number n and integration is on t, since both are independent
of each other, we can change their order.)

f(:f(t)dt= iman Uore""‘"fdt] (4)

To solve equation (4), we have to solve the integral separately.

We know that

b em9 b
f e™dg = [—] form =0 (5)
a m

a

(From equation (5) it is seen that for m = 0, the RHS becomes oo. Therefore, we can use relation
(5) only for m # 0)

Therefore, we calculate n = 0 and n # 0 terms separately in solving the integral of equation (4).
(i) Forn=0
T . T T
f em“’tdt=f eodt=f dt=[t]f=7-0=1
0 0 0
T .
f em"tdt =1 form=0 (6)
0

(i) Forn=+0

T inwt]? .
einwt ¢ — : = - [emwt]
0 nw | nw 0

— i [einw‘r _ eO]
inw
(From equation (2) w = ZTn or wt = 2m)

1 . 1 .
— " [pin2m _ — — |pi2nm _
T inw [e " 1] inw [e " 1]
1

1
=—/[cos2nm +isin2nr — 1] =—[14+0—-1] =0
inw inw
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

(As sin 2nm = 0, no imaginary terms appear in the equation)
T .
f emtdt =0 forn+0 (7)
0

by rewriting equation (6) and (7),

t 0 form+0
fe"“"tdtz €))
0 Tforn=0

Therefore equation (4) becomes:

frf(t)dt = a,T
0

1 (* -
=g | fod =T ©)

Here f(t) denotes the mean value of f(t).

Now multiply equation (1) by et and integrating over 0 to 7, we have

forf(t) e ot gt — for[ i a,en®

e”m  dt

n=—oo

T

T
f () e~ ot gy — ... 4 a_zf el(=2wt y—inwt ¢ 4 a—lf el-Dwt ,—inwt J4
0 0 0

T T

ei(l)wte—inwt dt+a2f ei(Z)wte—in dt + .-

T
+a0f el(Owt ,—inwt dt+a1f
0 0 0

T
+ anf elMote—inw g 4 ... (10)
0
From equation (7), only one term of coefficient a, survives, all other terms vanish
T . T
f f(t) e @t dt = anf dt = a,t
0 0
1 (* .
a, = - f F()emmo dr (11)
T Jo
Replacing n by —n in equation (11), we get

1 (* .
a_nz;fof(t)e tde (12)

From equation (11) and (12), we conclude that

an,=a, (13)
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

In order to find the usual real form of the Fourier series, equation (1) can be expressed as

o] -1 o]

f(t) — Z aneinwt — Z aneinwt_l_ a, +Zaneinwt
n

n=-—oo n=-—oo =1

— 00

oo
- § aneznwt+ a, + § anemwt

-1 n=1

n
[ee] [ee]
= Z a_,e " + a4 + Z apem®t

n=1 n=1

[ee]

f(t) =ao+ Z[anei"“’t +a_pe”met]  (14)

n=1

We know that: e = cos @ + i sin 6

. eM®t = cosnwt + i sinnwt, et = cosnwt — isinnwt  (15)

Therefore equation (14) becomes

f(t) =ay+ Z[an(cos nwt + i sinnwt) + a_,(cosnwt — i sin nwt)]

n=1

By rearranging the terms, we have

ft) =aq+ Z(an + a_,) cosnwt + Z i(a, —a_y)sinnwt (16)
n=1 n=1

If we take

(an + a—n) = Qn, i(an - a—n) = ﬁn: 2a, = ag (17)

Equation (16) becomes:

[ee]

a
f() = 70 + z a, cosnwt + z Bnsinnwt  (18)

n=1 n=1

Which is the same form of Fourier series.
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

We can determine the coefficients a,, and ,, by substituting values of equation (11) and (12) in

equation (17).

1 (* . .
(p = ap +ap = f f(t) [emmet + efet] dt
0
1 T
== f f(t) [cosnwt — isinnwt + cosnwt + i sin nwt] dt
0
2 T
sl = f f(t) cosnwtdt (19)
0
1 (* , ,
b= i@y —an) =7 [ @[t e e
0
1 T
== f f(t)i[(cosnwt —isinnwt) — (cos nwt + i sin nwt)] dt
0

= 1 frf(t) i [—2isinnwt] dt
T Jo

Asi?=-1, —i* =1

_if i d 20
[)’n—;fof(t) sinnwt dt (20)

Example:

Obtain Fourier series for the expansion of f(x) = x sinx in the interval —w < x < 7. Hence

deduce thatZ=2+ - -1 4+ L ...
4 2 13 35 57

Solution: the given function f(x) = x sinx is an even function of x in the interval -7 < x < m.

Hence the Fourier expansion of the given function x sin x would contain only cosine terms.

f(x) =xsinx =a, + Z a,cosnx (1)
n=1
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

1 (" 1 ("
a0=Ef f(19)d19=;f 9sinddd  (2)
0 0

We know the rule for integration by parts: for u(x) & v(x)

fabu-vdx:[ufvdx—f{fl—zfvdx}dx]z 3)

By takingu = 9,v = sinv

T d)d T
f 9-sind d9 = [19 fsinﬁ dﬂ—f{— fsinﬁ dﬁ}dﬂ]
0 ad 0

= [19 (—cos¥) — f{— cos ﬂ}dz?]n

= —[Y cosI|§ + [sinI]|§

= —[mrcosm— 0]+ [sinm —sin0] = —wcosmt = —n(-1) =7
s
f J-sind dd =n (4)
0
Therefore equation (2) becomes:

1 1
a0=Ef 1951n19d19=7—r><7r=1 v a=1 (5
0

s

2 (" 2
a, = —f f()cosnd dI = —f Ysindcosnd d9 (6)
TJo TJo
We know that: 2 cos Asin B = sin(4 + B) —sin(4 — B)
. 2cosnd sind =sin(n+ 1)9 —sin(n—1)9 (7)

Therefore equation (6) becomes

2 (7 1
a, = ;f 9sin®d cosnd d9 = ;f I [sin(n + 1)9 — sin(n — 1)9]d?I
0 0

1 s s
n = — U Isin(n+ 1)9 dI — f Isin(n —1)9 d9| (8)
0 0

Now applying rule for integration by parts, we take u = 9,v = sin(n + 1)¥ in first integral of
equation (8), we have
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

fonﬁ sin(n + 1)9 dY = [19 f sin(n + 1)9 dY — f {%f sin(n + 1)9 dﬁ} dﬂ]:

_ cos(n+1)9 cos(n +1)9 "
= [‘19 BT f {_T} dﬁL

. cos(n+1)9 sin(n+ 1)I]"
a n+1 (n+1)? o

cos(n+ m 4 sin(n + 1)w —sin0

n+1 (n+1)?
T cos(n+ D
f Isin(n+ 1)y dy = -1 ———— (9)
0 n+1
Similarly,
L cos(n — Dm
f Ysin(n—1)9 dd = —n 1 (10)
o _

Therefore equation (8) becomes

1 s s
a, = p [f Isin(n+ 1)9 dY — f Y sin(n — 1)Y dﬁ]
0 0

1 [ cos(n+ Dm { cos(n — 1)71}]
SR AN R Atk Sl

E n+1 n—1

1 cos(n+ Dm cos(n — 1w
—T +m
n+1 n—1

_cos(n+ Dm  cos(n— D
- n+1 n—1

As cos(m + 0) = —cos 0, cos(r —60) = —cos b

COSNT  COSNT [(n -1D-(n+1)
= = cos nm

MENFL T h-1 m+1)(n-1)

n—-1-n-—-1
tn = || cosn

2cosnm

If we take n = 1, above equation shows that denominator becomes zero and a,, becomes .
Therefore, above equation is true only for n # 1.

Forn = 1 equation (6) becomes:
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2 (" 1"
an:a1=;f 9 sind cos 9 dﬁz;f 9 {2sinY cos 9} d
0 0

1 s
a; = ;f Ysin29 d9 (12)
0

By applying rule for integration by parts, we take u = 9, v = sinnd

T

1 d9
a, =E[19fsin219 dﬁ—f{@fsinZﬁ dﬁ}dﬂ]
0

1 [ 9 cos 29 { cos 219} dﬁ]"
o 2 f 2 o

1[ 19c05219 sin 291"

== +
s 2 4 1,

_1[ c052n+0+sin2n—sin0]_1[ n]_ 1
T 4 “xl 21T 72
= L 13
a; = ) (13)

Therefore, by substituting values of equations (5), (11) & (13), equation (1) becomes

[ee)

[00]
f(x) =xsinx = qg +Zancosnx =ag +a1cosx+2ancosnx

n=2

[00)
2cosn7r
xsmx—l——cosx+ cos nx

S 1 {ZCOSZT[ ) +2cos31r 3 +2COS4T[ 4 + }
xsinx = 2cosx 571 cos 2x 371 cos 3x 271 cos 4x
1 2(1 2(—1 1
xsinle—zcosx—{ ( )C052x+ ( )c053x+ (5)cos4x+---}

{cos X 4 cos2x cos3x 4 cos 4x } 14
Yy 4 1.3 24 35 1D

Equation (14) is a Fourier series of function x sin x in the interval —m < x < .

Now substitute x = gin equation (14), we have

T 4 m ™
%Sin%= Ly CO:7+C0512_§2)—COZ?T£2)+COZ‘%§2)—
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

T 3
T 7-[_1 5 C057 COSTT COST
25“12 =

+c052n
4 1-3 24

T (15)

. T T 3 51 .
As sin- = 1, COSZ = COS— = COS— =+ = 0, equation (15) becomes

7T1—12{0+(_1) 0o .1t }
2= 4 1-3 2-4 3-5
T 1 2{ ! + ! ! } 16
2 13v35 5.7+ (19
Now divide both sides of equation (16) with 2, we get

m 1 1+1 1
4_2{1335 Rf}

n + ! 17
4 2 1-3 3-5 5-7 an
Which is required expression.

Example: Find a series of sines and cosines of multiplies of x, which will represent x + x?2 in the
interval —m « x < m. Deduce that

Solution: Let the Fourier series of the given function f(x) = x + x? be

f)=x+x*= a0+2ancosnx+2bnsinnx (1D
n=1 n=1

1 (™ 1 (™
= NdI=—| [P+94d9 (2
t=5:| r@as=5[ w+orla @
1[92 93"
Zﬂ[TJ’?]
-1
1 nz—(—n)2+n3—(—n)3 1 nz—n2+7r3+7r3 1 2n’] n®
B 2 3 B 2 3 2| 3| 3
77’.2

Ao = 3 3)

2m

1" 1"
a":;_[ f (@) cosnd dﬁz;j [9 +9%]cosnd d9  (4)
— -
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

1 Y Vs
an:T—TU 9 cos nd d19+f 92 cos nv dﬁ] (5)
-7 -7

We know the rule for integration by parts:
b

[fwvar=[u [var- [ [vada]  ©

a

We take u = 9, v = cosnd in first integral of equation (5), we have

T d)d
f Y cosnd dY = [19fcosm9 ad —f{—fcosm? dﬁ}dﬁ]
o d)d
9 sinnd sin nY T
- 5 ]
n n

-1

A

—TT

B [19 sinnd { Ccos nﬂ}]” 1 [19 sin nd d cos nﬁ]”
-7 -7

n n? s n n2

B [n sinnw — (—m) sin(—nm) N cosnmw — COS(—TL?T)]

n n2

msinnm —mwsinnm  cOSNT — COS NIT
n n

s
f Jdcosnd dd =0 (7)
-7

By taking u = 92, v = cosnd in second integral of equation (5), we have

b3 d192 T
f 92 cosnd d9 = [ﬁzfcosnﬁ do —f{wfcosm? dﬁ}dﬂ]
- -

92 sinnd sinnv " 9%sinnd 2 _ "
= T_I{Zﬂ " }dl? = ———fﬁsmnﬁdl‘)
-1 -1

n n

n?sinnm — (—m)?sin(—nm) 2 [*
= - —f 9 sinnd dI
n n)_.
Vs 2 Vs
f 92 cosnd dﬁz——f Isinnddy (8)
-7 nJj_n

By takingu = 9, v = sinnd
T 2 (" 2 . dy .
f 92 cosnd dI = ——f 9sinnd dd = ——[{ﬁfsmnﬁ dﬁ—f{—fsmnﬁ dﬁ}dﬁ}]
- nj_, n dd

21 9cosnd cos nY T
-3 e e
n n n

-1

s

-1
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2 [ 9 cosnd N sin nﬁ]” 2| mcosnm— (—m) cos(—nm) N sinnm — sin(—nmn)
T on n nz2 l_, n n n?

2 [ T COS NIt + T COS nrt] 2 [ 21 cos nrt] _ 4mcosnm

T on n T oon n B n?

"o 2 (" 41 cos nm

f 9“ cos nY dﬁz——f Isinnddd = ——— (9)
n

-1 -1

From equation (9) we can also write as

T 27T COS N1t
f Isinnddyd = ———  (10)
- n

This equation will be used for further calculations.

By substituting values of equation (7) and equation (9) in equation (5), we have

1[r™ T 1 41 cos ni
a":Ef 9 cos nd d19+f 92 cosnd dv ZE[O-I_T]
=TT =TT
4 cosnm
a, = — (11)

Similarly,

[

1" 1
bnz—f f () sinnd dﬁz—f [9 + 92]sinnd dvY
)_, m)_,

1 Y Vs
b, = —U Isinnd dI +f 92 sinnd dz?] (12)
Tl n -7

From equation (10), we have first integral of equation (12) written as

2 27 COS NTT
f Ygsinnddy = ——  (10)
- n

By taking u = 92, v = sinnd in second integral of equation (12), we have

b3 d92 T
f 9% sinny dY = [ﬁzfsinnﬁ d9 —f{%fsinnﬂ dz?}dz?]
— -

9?2 cos nI cos nd 4 9% cosnd 2 4
= ———f{—Zﬁ " }dﬁ = ——+;j19cosm9d19
=TT =TT

n n

[ m? cosnm — (—m)? cos(—nm) N 2

T
= —f 19cosm9d19]
n nJ_,

n?cosnm —mécosnt 2 (T
— +—f Y cosnd dv
n nJ_,
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

s 2 s
f 9?2 cosnd dY = —f Ycosnddy (13)
-7 nJj_n
But from equation (7) f_ﬂnﬁ cosny dI = 0, RHS of equation (13) becomes zero.
s
- f 9%sinnd d9 =0 (14)
-1

By substituting values of equation (10) and (14) in equation (12), we have

1™ T 11 2mcosnm
b, =— f 9 sinnd dv +f 92 sinnd dv =—[——+O]
Tl)-n - T n
2 cosnm
b, = —— (15)
By rewriting equations (3), (11) and (15)
m? 4 cosnm 2 cosnm
Go=7, =35, b=~ (16)

Substituting values of equation (16) in equation (1), we have

f(x):x+x2=a0+2ancosnx+2b sinnx (1)

n=1

2 o [4cosnm [ 2cosnm]
f(x)=x+x2=?+2[ ]cosnx+2[ ]smnx a7

n2
n=1 n=1

By expanding the summations of equation (17), we have

2

, T COST COS 21 cos3m cos4n
f(x)=x+x =?+4[ 1z cosx + cos 2x + cos3x + — cos4x+-~-]
COST cos2m cos3m cos4m
—2[ sinx + sin 2x + sin 3x + sm4x+---]

w2 1 1 1
f(x)=x+x2=?+4[ cosx+2—c052x—3—cos3x+Ecos4x+ ]
2 i +1 in 2 L 3 +1 in4x +
[ sinx 2sm x 3sm x 4sm x ]

,_ T 1 1 1
fx)=x+x =?—4[cosx—?c052x+3—2cos3x—ﬁcos4x+---]

1 1 1
+2[sinx—zsian+§sin3x—zsin4x+-~-] (18)

At extremum 7 and - 7, the sum of series

1 1
f(n)zz [f(—ﬂ+0)+f(7r—0)]=§[—ﬂ+n2+n+n2] = m?
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation
s fm=n* (19)

Substitute x == 1 in equation (18), we have

2 1 1 1
f(m) = m? =?—4[00571—2—2c052n+—cos3n—4—2cos4n+---]

32
+2[' 1'2+1'3 1'4+]
SIN71 2SlI‘l T 3SlI‘l T 4-SlI‘l T
2_n2 4[ . 1 1 1 ]
=73 22732 42
2—7T2+4[1+ +1+1+ ]
=3 22732 T g2
5 T2 1 1
T —?:4[1+?+?+4‘—2+ ]
3n2—n2_2n2_4[1+1+1+1+ ]
3 3 22 32 42
Zﬂle [1+1+ +—=+ ]
3 T4 22 1 32 42
2—1+ +1+1+ —il 20
6 22 32 42 n2 (20)

Which is required series.

Example: Find the series of sines and cosines of multiplies of x which represents f(x) in the
interval —m < x < . Where

f(x) =0 when — T <x <0

X
:T when0<x<m

2
And hence deduce === 14+ = + = 4 -
8 32 5

Solution: Let f (x) be represented by Fourier series

f(x) =ay +Zancosnx+ ansinnx (D

n=1 n=1

Where,

1 T 1 0 T
=3z f@a0 =2 [ s@rao+ [ roras] @
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= a7 ol = L1 (" aol = 1 m[9?2]"  n?
%= on fo 4 _2n4f0 T4z 16
2

/[
Ao = 16 3)

1 0 T
a, =EU f (@) cosnd dI +f f () cosnd dz?]
-7 0
1 T 1 (™
an=—0+f —cosnd di =——f19cosm9d19
T 0o 4 (4 ),

1 s
a, =ZU Y cos nd dﬁ] (4)
0

By taking u = 9, v = cos nd and using the rule for integration by parts:
b

[fwvar=[u [var- [ [vada] ®

a

1 (™ 1 do i
an :Zf Y cosny dvI =Z[19fcosm9 dﬁ—f{@fcosnﬁ dﬁ}dﬁ]
0 0

1 [19 sinnY { sin nﬁ} dﬁ]n
n=3% n f n 0

1 [19 sin nd { cos nﬁ}]" 1 [19 sin nd N cos nﬁ]n
- -1 B 4 n 0

4 n n2 n?

1 [nsinnn -0 N cosnm — COS(O)] 1[cosnn— 1]

4 n n? n?

a, =W[cosnﬂ— 1] (6)

We know that
_ {—1f0rn =1,3,5,..
COST =1 1forn=0,24,..
D" -1
In=""73— D

Similarly, we have

1 0 T
b, =EU f@®)sinnd dY +f f (@) sinnd dﬂ]
-7 0
1 o 1[m (™ 1™
b, =— 0+f —sinnY dj| =— —f Jsinnd dI| =~ f Ysinnd dd
T 0o 4 (4 ), 41,
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation

—l[ 7T19' 19d19] 8
—41; sinn (8

By taking u = 9, v = sinnd and using the rule for integration by parts:

_1 nz? innd dv = ! [19 innd dv {dﬁ in nv dﬁ}dﬁ]n
—4f0 sinn =1 fsmn f dﬁfsmn .
s

11 Ycosnd cos ng9
o [
4 n n 0

_ [ 19cosn19+smn19] [ T COS NTT — 0+smnrt—sm0]_1[ ncosnrr]
"4 n nz 1, 4 4

n n2 n
T COS NI (=" m(—1)"*t
by = — =— by = —— (9
n 4n an 07 Pn 4n ©)
2 (-1 —1 (=1 (=11
% =16 ="z bn == in 4n

Equation (1) becomes

f(x) =a, +Zancosnx+ Zb sin nx

f(x) =— + z [( 1)" ] cosnx + z [T[( 1)n+1] sinnx

By expanding the summations, we have

1 _ 132 _ _13\3 _ —1)4 _

f(x)——+[ 112 1.7 ]c052x+
+ D"~ ] cos5x + -+ + [—n(_l)Hl] sinx + [—n(_l)ZH

] cos 4x

452 4-1 4-2

7T(—1)3+1 . 7.[(_1)4+1 . 7.[(_1)5+1 .
+ T sin 3x + T sin4x + T sin 5x + -

] sin 2x

2

=To [ cosx+ [rmge]osse+
f(x)—16 2| cosx + |5z |cos3x

4-2

4__§2]c055x+ -+ [4 1]smx+[

[47'[3] sin 3x + [4 71] sin4x + [47'[5] sin 5x + -

] sin 2x

m? cos3x cosbx sin2x sin3x sin4x

1 Tl .
f(x)zE—E[cosx+ 32 + o2 +---]+Z[smx— 5 + 3 12 +] (10)
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This is a Fourier series of a given function f (x).

At extremum 7 and - i, the sum of series

1 1 T 11221 72
f(ﬂ)zz[f(—7T+0)+f(7r—0)]:§[0+(T)x:n]: [ ]

4 8
T[Z
o f(m) =5 (11)
Substitute x = 7 in equation (10), we have
m? m? 1 cos3m cos5m T sin2m  sin3m sin4m
f(n)zKZE—Ecosn+ 32 + o2 +---]+Z[smn— > + 3 "2
| 1 1 ]
8 16 2 32 52
w2 n2_1[1+1+1+ ]
8 16 2 32 52
7T2—1[1+ P ]
16 2 32 52

Which is required series.

Example: Find Fourier series for f(x) in the interval (—m, ), where

£ T+x,when—nt<x<0
xX) =
m—x,when 0<x<m

Solution: Let f(x) be represented by Fourier series as

f(x)=ay+ Z a, cosnx + Z b,sinnx (1)
n=1 n=1
Where,

1 (" 1[° i
a=5| @0 =5 [ | @y ao+ f £@) dﬁ] @
1 0 T
— U_”(n +9)dd + fo (m - 19)d19]

1 92)° 92)"
{7'[19 + 7} + {71'19 - 7} ]
- 0

2m
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USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation
1 (—m)? (m)? i[, o , n° 1
_E[O—{n(—n)+ 5 }+{n(n)—7 -0 =5 —7+n -5 _E[n]

1 0 T
a, =E[f_nf(z9) cosnd d19+f0 f () cosnd dﬁ]

1 0 T
a"=1_rU (mr +9) cosnd d19+f (r —9) cosnd dﬂ]
-7 0

0 T

1 0 s
a":E[f T cosnY d19+f Y cosnd d19+f 7 cos nY dﬁ—f Y cosnd dﬁ] (4)
-7 -7 0 0

We calculate each term separately,

sin nﬁ}‘in _ n{ sin 0 — S;in(—nn)} 0 (5)

0
f mcosnd dv =7r{
-7

sinn9" sinnm —sin 0
} _ n{—} 0 (6)
0

T
f mcosngd did =n{
0 n n

By taking u = 9, v = cosnd and using the rule for integration by parts in second and fourth

integral, we have:
b

fabu-vdx= :ufvdx—f{z—zfvdx}dx]a (7
0

0 dy
f Ycosnd dY = 19fcosm9 dﬁ—f{—fcosm? dﬂ}dﬁ}
-1 ad -7

0 Uvsinnd cos nﬂ}o
-1

sin nd sinnd Y sinnd cos n9\)°
e B e L B e e | e
n n - n n - n n

0— (—m) sin(—nm cos 0 — cos(—nm 1 — cosnm
(-m)sin(-nm) | os(-nm) _1 - co ®
n n n

= +
n n2 n2

{19 sinnd cos nﬁ}” _ mwsinnmt—0 cosnm — cos0 _ cosnm — 1 )

n? ),

T
f Ycosnd dI =
0

By substituting values of equations (5), (6), (8) & (9) in equation (4), we have

1 0 0 T T
an=—U 7 cosnyY d19+f J cosnd d19+f 7 cosnd dﬁ—f J cosnd dﬁ]
-1 -1 0 0

T
1 1 — cosnm cosnmt— 1 2 n
an=;[0 T+O— 2 ]znnz[l—cosnn]z W[l_(_l)]
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2
an=—[1-(D" (10

Similarly, we have
1 0 T
b, =7—TU f () sinnd d19+f f (@) sinnd dﬂ]
- 0
1 0 T
b, = EU (mr +9)sinnd dI + f (r —9) sinnY dﬁ]
- 0

0 0 s s
b, =—U 7 sinnd d19+f Y sinnd dd +f msinnd dJI —f 9 sinnd dﬂ] (11)
L PR - 0 0

We calculate each term separately,

o cos n9° cos 0 — cos(—nm)
f 7 sinnd dﬁ:n{— } =n{— }
- -

= 1 12
- —E(cosnn—) (12)

n

T cos n9)”" cosnmw — cos 0
f 7 sin nd d19=7r{— } =TL’{— —}
0 0

=21 13
- _Z( —cosnm) (13)

n

By taking u = 9, v = cosnd9 and using the rule for integration by parts in second and fourth
integral, we have:

0 d)
f 9sinnd dJI ={19fsinm9 dﬁ—f{—fsinnﬁ dﬁ}dﬁ}
o dy
cos nv cos nv 0 Ycosnd sinnd)°
e o e CL B e
n n _ n n -

T

0

-7

0 — (—m)cos(—nm) sin0 — sin(—nn T COS NTT
_ _0=(mcostnm) | n(-nn) __meosmr
n n
T 4 Ycosnd sinnd)” mcosnt —0 sinnm —sin0 T COS NTT
f Jsinnd dY = {— +— } =- + > = - (15)
0 n ns ) n n n

By substituting values of equations (12), (13), (14) & (15) in equation (11), we have
s

1 0 0
b, =—U 7 sin nd d19+f Y sin nY d19+f
T - 0

T
msinnd dJY —f Y sinnd dﬁ]
0

_1[7'[ 1+n(1 ) T COS NTT (
—nn(cosnrt ) - cosnm

TT COS nn)]
n

n

Q-
31

[cosnTt — 14 1 — cosnmt — cosnm + cosnm] =0

» by=0 (16)
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T 2
A =5, = W[l -(=D", by=0 (17)

Equation (1) becomes

(o 0] [ee] (o 0]
f(x)=ay+ E a, cosnx + ansinnx=a0+ E a, cos nx
n=1 n=1

N|=l

fx) = Zni [1-(- 1)"]cosnx——+—zwcosnx

By expanding the summations, we have

_ (—1)2 43
- 2{—[1 1(2 D] osx+—[1 ;2 D ]cos 2x+—[1 ?EZ D ]cos3x]|
Fe =5+ e N e G |
l +TCOS x+Tcos X+ - J
2 2 2
f(x)= [2cosx+§c053x+¥c055x+ ]

1
— c0s 5x + ] (18)

T 4 1
f(x) :E+g[cosx+§c053x+52

This is a Fourier series of a given function f(x).

Example: Obtain the Fourier Series for a function f (x), where

cosx for 0<x<m

fx) =

—cosx for—-m<x<0

Solution: Let the Fourier series represented by

f(x) =a, +Zancosnx+ ansinnx (D

n=1 n=1

1 T 1 0 4
Gy = Ef_ﬂf(a) 49 = EU_nf(ﬁ) 0 +fo £09) dﬁ]

1 0 T
0= E[I_n(—cosﬁ) dd +f0 cosV dﬂ]

ag = % [—{sin¥}°, + {sin¥}7] = % [—{sin 0 — sin(—m)} + {sinT —sin0}] =0

a, =0 (2)

1 Vs
=;f f (@) cosnd dI
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1 0 9 9 dY i 9 9 do
an_EU—nf( )cosn +f0f( ) cosn ]

1 0 "
= E[_f cos 9 cosntd dvI +f cos 9 cos ndd dﬁ] 3)
- 0

We know that 2 cos A cos B = cos(4 + B) + cos(A — B)

T

LAy = 1o fo l{cos(n + )9 + cos(n — 1)9} dI + f 1{cos(n + 1)9 + cos(n — 1)9} dI
S I ) o 2

1 sin(n+1)19+sin(n—1)z9 0 4 sin(n+1)9 sin(n — 1)9)"
= on n+1 n—-1 |} n+1 n-1

“ap =0 (4’)

1[° : i .
b, =;U_nf(z9)smnz9 d19+f0 f (@) sinnd dﬂ}

1 0 T
b, = - [—f cos Y sinnd d9 + f cos ¥ sinnd dﬁ] (5)
-7 0

We know that 2 sin A cos B = sin(4 + B) + sin(4 — B)

™

[ o1 | 1 |
by = = [— f_ni{sm(n + 1Y + sin(n — 1)9} d9 + L E{sm(n + 1)9 + sin(n — 1)} dﬂ]

b = 1| cos(n+1)9 cos(n—1)9 0 4 cos(n +1)9 cos(n —1)9)"
T n+1 n—1 . n+1 n-1 J

1 [cos0 — cos(n + 1)(—m) N cos0 —cos(n —1)(—m) cos(n+ 1)m —cos0

b, =—
"o2m| n+1 n—1 n+1
cos(n —1)m — cos 0
n—1
1 [l-cos(n+ D 1—-cos(n—1rm cos(n+1)r—1 cos(n—1m—1
" 2m n+1 n—1 n+1 n—1
1 2—2cos(n+1)n+2—2cos(n—1)n
" 2m n+1 n—1
As cos(m + 6) = —cos@,cos(m—60) = —cosO ~ cos(n+ 1)m = —cosnm,cos(n —1)m = — cosnm
) _1[1+cosnn+1+cosnn _1( 1 >[1+ ]
Pl on+1 n-1 ] n\n+1 n-1 cosnr
2n

_1(n—1+n+1

1 ) [1 + cosnm]

1
1 ==
)[ + cosnr| n(nz—l
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~ by [1+ cosnm]

_ n
(-1

by = — [+ (=D 5
n—m[‘l'(—)] ()

_ 0 C -
Above equation is true for n # 1. Because forn = 1,b, = b; = 7 which is indefinite.

Forn = 1, equation (5) becomes

1 0 T 1 0 T
b, =— —f cosVI sind d19+f cosYsing dI| = — —f sin 29 d19+f sin 29 dY
n -1 0 2m -1 0

(As 2sin 8 cos 6 = sin 20)

b_l cos 29)° cos2N*| 1 910 i

e B e BN Bt }0]—5[{“’52 12, — {cos 203F]
1 1

=1 [{cos 0 — cos(—2m)} — {cos 2m — cos 0}] = E[{l -1}-{1-1}]=0

2n
ag = 0, a, = 0, b1 = 0, bn = m[l + (—l)n] (6)

Equation (1) becomes

f(x)=aq, +Zancosnx+ ansinnx

n=1 n=1

f(x) = Z b, sinnx = b, sinx + Z b, sinnx
n=1 n=2

[oe]

N i _2x0nl+ (=D
f(x) :0+;m[1+(—1) ] sinnx =Ezwsmnx

n=2

On expanding the summation, we have

132 _133 _
flx) = %[—2[1; (_ 11)) | sin 2x + —3[13—2 (_ 11—)) | sin 3x + —4[t4t (_ 11))—4] sin 4x
—1)5 _1\6
%sin 5x +%sin6x + ]

—2[4'2+8'4+12'6+ ]
f(x)—n 7SN 2x + J=sindx + o sin 6x

—4[2'2+4'4+6'6+]7
f(x)—nl_Bsmx 3¢ Sin4x + ¢ sin6x (7

Which is the required series.
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Example: Find the values of )., niz using Fourier series.
Solution: Let f (x) = x?
f(x)=x2=a0+2ancosnx+ ansinnx (D)
n=1 n=1
As the function is even function, f(—x) = (—=x)? =x2 = f(x), b, =0 (2)

Therefore equation (1) becomes,

fxX) =x?>=ay+ Z a,cosnx  (3)

I P O AT 931" 1 [n®-(-m)?] 1 [2r%] m? .
a"_zﬂf_nf() _2ﬂf_n “2n|3]_ T2 3 w3 |3 W

1" 1 (™
=_f f () cosny d19=—f 9% cosnd dI
T - T -

We have derived equation (9) of example (2) as,

41 cosnm

T 2 T
f 92 cosnd d9 = ——f Jsinnddd = 5
_ n)_, n

s

n2 n2

_1 ”]92 : dﬁ_1[4ncosnn]_4cosnn
n_”f—n cos N = =

a4
=D'—= ®
Therefore equation (3) becomes,

f(x)=x2:a0+2ancosnx—%+i[( 1)" ]cosnx (6)

n=1
By expanding the summation of equation (6), we have

2

4 4 4
x? =—+( 1) cosx+( 1)2—c052x+( 1)3—c053x+( 1)4—cos4x+
1 1
:——4[cosx——c052x+§c053x—Ecosélx ] (7

For x = 0, equation (7) becomes

1 1
:——4[cosO——c050+—c050——cosO...]

32 42
O_nz 4l 1+1 1 ]
3 22 32 42
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0=" 4[1+ + +1 22 ]
3 22 32 427 2 42
0= 4[{1+ MRS } 2{+1+ }]
3 22 32 42° 22 22
O_n24i1 15:1_22511
3 nz 2 n2| 3 n2
n=1 n=1 n=1
nz_zil -nz_il
3 nz 6 n2
n=1 n=1
. = 1_7r2
'Zn2_6
n=1

Which is required expression.
Example: Using Fourier series prove that:

2

Z (2n — 1)2 ?

The LHS of above equation is expanding as

We know that )., niz =
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Example: Find a series of cosines of multiplies of x which represents x in the interval (0, ).
Hence deduce that:

Draw graph of the function.

Solution: Let f(x) = x be the function. The Fourier series is given as

fx)=x= a0+2ancosnx (D

ff(ﬁ)dﬁ_ fﬁdﬁ— [T [ ]:% )

2 (™ 2 (7
=—f f (@) cosnd d19=—f 9 cosnd d9
T 0 T 0

By taking u = 9, v = cosnd and using rule for integration by parts, we have

2 dy 4
a, = p [19fcosm9 dﬁ—f{@Jcosnﬁ dﬁ}dﬁ]
0

2 9 sinnd sin nY T 2 7r19sinnd cosndt”
- - ] +=
T o o

n n n n2

2 [nsinnn—0+cosnn—c050' 2 [(—1)"— 1]
n n n? B

n2

Lo 21D
- an = n[ | ®

Therefore equation (1) becomes,

f(x)=x=a0+2ancosnx=g—%z [1_( D) ]cosnx 4
n=1

n=1

On expanding the summation in equation (4), we have

— —(— 2 -\~ 3
T 2 I[{—l ( 1)} cosx + {12#} cos 2x + {13#} cos 3x]l
2 nll +{#}Cos4x+{#}c055x+m JI

- 2[2 + 2 cos3x + = S+ - |
X = 2 - COS X 32 COS oX 52 COS oXx
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m 4 1 1
[cosx + 3—2cos 3x + ﬁcos 5x + - ] (5

By taking x = 0 in equation (5), we have

0=" 4[ 04 cos0t— 0] [1+ +1+]
= 2 - COS 32 COoS 52 COoS 52
n_4[1+1+1+ ]
2 32 52
1
[1+ +52+.-] 6)

This is the required series. Equation (5) is rewritten for y = x as

T 4 1 1
y=x= E—E[cosx+3—2c053x+§c055x+ ]
In the interval (0,m), the line y = x gives the curves represented by the series. Hence f(x)
represented by the above Fourier series contains cosine terms only. So, this is an even function
and the curve is symmetrical about the axis of y along which f (x) is plotted. Period of the series
is 2m, hence the portion between —m to 7, repeats indefinitely on both sides and the sum is
continuous for all values of x.

y=1(x) y

I
I
i

-2t - 0 m 2n X R —wZ 0 w3 m b

In fact, the graph of the sum of n terms of Fourier series for f (x) approximates to the graph of
f(x) the greater value of n is, the closer is the approximation. With three terms in equation (5),
the graph is as shown in figure (2).

Example: Find the series of sines of multiples of x which represents x in the interval m = x > 0.
Show by a graph the nature of the series.

Let f(x) = x be a function.
f(x)=x= z b,sinnx (1)
n=1

2 (" 2 (™
b, =—f f(@)sinny dJ =—f Isinnd d9d  (2)
TJo TJo

By taking u = 9, v = sinnd and using rule of integration by parts.
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b—219 innd dv Dl 19d19d19n
n—n[fsmn f{dﬁfsmn } ]0

s

2 9 cosnd cos ng9
(e
T n n 0

21 Ycosnd sinnI"
[ ot s
T 0

n n?
2 nmcosnmt—0 sinnm —sin0 2 T COS NTT 2
=—[— + > ]z—[——]z——[cosnn]
T n n T n n

.b__z _1n_z_1n+1 3
by === (D= (D™ (3)

Therefore equation (1) becomes

- =2 = (—1)™* ! sinnx
x = Z b, sinnx = Z— (=D)"™"sinnx = ZZL
n n
n=1 n=1

n=1

By expanding the summation, we have

—D™lsinx  (=1)%*'sin2x (—1)3*'sin3x
x=2[( )1 +( )2 +( )3 +]

sin2x sin3x
x=2[sinx— > + 3 +] (4)

This sum is discontinuous at x = 7. When we draw a graph, the curve is symmetrical about the
origin. The series represented between (—m, ) repeat identically in both the directions. The
points + m, + 2m, + 3m, ... are points of discontinuity.

¥ ="fx)

A A

Example: Find the Fourier series for the periodic function f (x) defined by

=-mif-t<x<0
= xif 0<x<m

f()

2
Hence prove that o142 4+2 ..
8 32 ' 52

Solution: Let f(x) be a function having Fourier series

f(x) =aqy +Zancosnx+ ansinnx (D
n=1 n=1

1 s 1 0 s
=g | @ as=5| [ soras+ [ rora] @
- -7 0
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1 0 s 1 192 T
= [ f_ (md9 + fo 9 dﬁ] =— [{—nﬂ}gn + {7}0]
i 2 s
2

L 2+—2—0—i————— 3
B M) T ==z ®

1 T 1 0 b4
a, =Ef_nf(z9)cosm9 dd =;[f_nf(z9)cosm9 d19+f0 f () cosnd dﬂ]

1[° m
=— U (—m) cosnd dI + f 9 cosnv dﬁ]
w|)_, o

Hlem = om0 [ 55 ono athes]

O N | s (0N

1 [19 sinnd + cos nﬂ]” 1 [n sinnm — 0 4 COS NIT — COS 0]
0

T n n2 T n n2

1
YO = [cosnt —1] (4)

b =lfnf(19)sinn19 d19=l fof(ﬁ)sinm? d19+fnf(19)sinn19 dd
" ) _n Ly —r 0

1[ (° T
== [f (—m)sinnd dI + f Y sin nY dﬁ]
m|)_, o

] oo e o]

_ % [n {cos 0-— CnOS(—nn)} N {_ 9 co: nd f {_ Coimg} dﬂ}:]

1 [ 1 — cosnrm dcosnd sinnd)"
0

iis n n n2

_ 1 [{n—ncosnn}_l_{ ncosnn—0+sinnn—sin0}]

T n n n?

1[n—ncosnn ncosnn] 1[n—2ncosnn]
T

n n T n

1
b, = E[l —2cosnm] (5)

Therefore equation (1) becomes
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f(x) =ag +Zancosnx+ ansinnx
n=1 n=1

T o 1 1
flx) = _Z+ Zm[cosnn— 1] cosnx + Zﬁ[l — 2 cosnr] sinnx
n= n=

By expansion of summations, we have

_ 7T+1 (cosmt—1) +(C052n—1) ) +(c0537r—1) 3y +
flx) = 2T 12 cosx > cos 2x 3 cos 3x
(1—2cosm) . (1 —2cos2m) | (1—2cos3m) .
+ |[————sinx + ————=sin2x + —————sin3x + -
1 2 3
) = rr+1[ ) +(—2)c053x+ ]+[3_ sin2x+sin3x ]
f(x) = it coS X 32 sin x 2 3
cos 3x sin2x sin3x

f(x)=—%—7%[cosx+ 32 +---]+[35inx— > + 3 +] (6)

Which is the required series.

One discontinuity occurs atx = 0

1 1 T
fO =S [f(-n+0) +fr-0]=z[-n+0 === (7

By substituting x = 0 in equation (6)

0) = T w2 0+COSO+ ]+[3'0 sin0+sin0 ]
fO==-5=-7 n[cos 32 s 2 3
i L 2[1+ +1+ ]
2 4 32 ' 52
AL 21+1+ + ]
4 7 32 ' 52
= 2[1+1+ + ]
4 7 32 ' 52
T T 1 1
() =[rrmrat]
2 1
?;'=:1.+'§5'+'§5'+

Which is required expression.
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Physical Applications of Fourier series:

(1) Fourier series involving phase angles:

We have

[ee]

a

f(t) = 70 + z a, cosnwt + z Bnsinnwt (1)
n=1

n=1

Where

2 2 (" . 21
an=;ff(t) cosnwt dt, /3n=;ff(t) sinnwt dt,  T=— 2
0 0

Let

ay cos nwt + B, sinnwt = y, cos(nwt — 0,,)

(3)
Here @,, being the phase angle. We know that cos(A — B) = cos A cos B + sin A sin B

a, cos nwt + B, sinnwt = y, cos nwt cos @, + y, Sinnwtsin@,, (4)

Equating coefficients of cos nwt and sin nwt on both sides of equation (4), we get

ap =ypcos@, (5)

Bn = YnSin@, (6)
By squaring equations (5), (6) and adding the results, we get

anz + an = Vnz[cosz D + sin® Dn] = Vnz[l]
& ynz = anz +Bn2
Yn = \[anz + ﬁnz ™
By taking ratio of equation (6) to equation (5), we get

B VYnsSin®, sin@,
_— = = = tan @n
a, Yncos@, cos@,

~ @, =tan"! (i—:) (8)

Therefore equation (1) now becomes,

[ee]

a a
f() = 70 + z a, cos nwt + z B sinnwt = 70 + Z[an cos nwt + B, sin nwt]

n=1 n=1 n=1
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f®—§+2mwwwﬁ70(%

Or

f@) = 70 Z sin nwt+%—®n) (10)

(2) Effective values and the average of a product:

When dealing with the problems in electrical circuit theory and in the theory of mechanical
vibrations, we require to find the root mean square of effective value of a periodic function. In
terms of complex Fourier series expansion, a periodic function f(t) is given by:

[ee)

f©O= ) aem (1)

n=-oo

2T
Where 7 = —

The rms or effective value of the function f over a period 7 is given by
1 T
§=;ff%0m
0

(We know that for complex function like z = x + iy, z" = x — iy,

z2=z-z"=(x+1iy) - (x—iy) =x* + (—=)?*y? =x?+y%, = z2 =x* + y?)

[ee]

107 <
=_f L. einwt . @ eimot| gt
T § n E m
0

n=—oo m=—oo

1 T 0 [oe)
_f Z Z a. a ei(n+m)wt dt
), n Y“m

Nn=—00 m=—00

Z Z a, ap, U ‘("“")“’tdt] (2)

n——OO m=—oo

Here we calculate the integral of equation (2) separately. If n + m # 0 then

T

T ei(n+m)wt ei(n+m)wr —e0 e
f etnrmwt g — — —
o im+m)w 0 im+m)w

i(n+m)2m __ 1]

im+m)w

[cos(n +m)2n + sin(n + m)2m — 1] [ 1+0-1 ]

im+m)w inm+m)wl
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T
f elmotgr = 0 forn+m =0 (3)
0

Forn + m = 0, we have
T . T T
f elmtmotge — f e’dt = f dt=[tlf =1 (4)
0 0 0

T —
. f pitntmat gy = 0Oform+n=+0 )
0 =1form+n=0

All the integrals in equation (2) vanish except for n + m = 0 or m = —n. Therefore equation (2)

oo oo T
o fE = 1 Z Z an A [f ei("+m)“’tdt]
T 0

n=—00 Mm=—0o

T T
ei("‘n)“’tdt} +-+4a,a_, {f ei("‘l)“’tdt}
0

=ty [erava |

becomes

T
n=-—oo
T . T .
+ a, a, {f e‘("+°)“’tdt} +a, a, {f e‘("“)“’tdt} + ]
0 0
= - an, a_,T
E T n n
n=-—oo
2 _
E — Z ana_n (6)
n=-—oo

By expanding the summation
-1

fEZ: Z ana—n+a% +Zana—n

n=-—oo n=1

f=at+2) jal
n=1

To find the average value of a product of two periodic functions with the same period 7 = 2 /w,

let us assume two functions f; and f, given by

ﬁ=iwm(%

m=—coo

37
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Then average of the product is given by

1 T
average of the product = ;f f1(®) f2(t) dt
0

[ee)

A5 5]

17
= _f a. b ei(n+m)wt dt
), é n Ym

n=—oo

[ee]

1 T
J—— Z a. b f ei(n+m)wt dt
T n Ym o
n=-—o
= ! i b 10
- T an D_pn ( )
n=-—oo

(3) Transverse vibrations of a string:

Consider the transverse vibrations of a stretched string at the ends. Suppose that the string is
initially distorted into some given curve and then allowed to swing. Let the length of the string
be [ and the equation of the curve be y = f(x) with respect to the position of equilibrium of the
string as X — axis and the one of the ends as origin. The vibrations are given by

The boundary conditions are:
y=0atx=0 (2)
y=0atx=1 3)

y=f(x)whent=0 (4)

9 owhent=0 (5
3¢~ Qwhent = (5)

Let

y = Ae®™*Bt ()
be the solution of equation (1).
Its first and second derivative with respect to x and t are:

dy %y dy %y
= =al[de®™*F |=ay, S=a%  ==py, ez

ox ox? ot =Fy D
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Substituting these values in equation (1), we get

%y
otz ox?’

Equation (6) becomes
y = Ae®+B = pewxtaat ()

Equation (9) is the solution of equation (1).
Now substitute ¢ = ai and @ = —ai in equation (9), we get

y = Ae(xtatiai (10)

y = Ae~(xtatai (11)
By adding equation (10) and (11), we get

2y = Ae(xtat)ai 4 po—(xtat)ai — A[e(xiat)ai + e—(xiat)ai]

e (xtat)ai +e —(xtat)ai

2

y=A = Acosa(x *+ at) (12)

This may be also expressed as
y = Bsina(x + at) (13)
From equation (12), we can write as
y = Acosa(x + at) = A[cos ax cos aat — sinax sinaat] (14)
y = Acosa(x — at) = A[cos ax cos aat + sinax sinaat]  (15)
Successive solutions of these two will be
y=Acosaxcosaat (16)
y =Asinaxsinaat (17)
Similarly, from equation (13), we get
y = Bsinaxcosaat  (18)
y = B cos ax sin aat (19)
Out of these four values of y, if we take value of y as in equation (18), we get

y = B sin ax cos aat (18)
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Which satisfied boundary condition shown in equation (2) and (4), and also satisfy condition
shown in equation (3) by putting a = nT”, equation (18) now becomes

= ntx  nmat
y= Z b, sinTcos i (20)

By expanding the summation,

. TX rat . 2mx 2mat ~ 3mx 3mat
y=b SmTCOST+ b, smTcos ] + b; smTcos ]

+ (21)

This relation satisfied condition (2), (3) and (5). This may also satisfy condition (4) if we put
t =0, we get

3nx
+ bz sin— + - (22)

21X
+ b, sin— ]

y=b sm ]

!

Now consider the Fourier series defined by (same as equation (22))

3mx
+ b3 sm— (23)

2mx
f(x)=by sm ] +b2 sin— ]

l

Then, (multiply both sides of equation (22) with sin # and integrating fromx = 0tox = L)
2 (! . nmx
=7 f f(x) sin—— dx (24)
0

2 (! ~ nmd
bn = T f f(l9) Sll’lT dy (25)
0

(By replacing x with )

Substitute this value of b,, in equation (20), we get

X nmat nmx nmat
y = Zb sm cos Z[ ff(z?)sm— dz?]smTcos i

By rearranging the terms, we get

2% nmx  nmat nmd
= —2 sm—cos f () sm— dd (26)
n=1

This is a required expression.
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Diffusion equation or Fourier equation of heat flow:

Assuming that the temperature at any point (x, y, z) of a solid at time t is u(x, y, z, t), the thermal
conductivity of the solid is K, the density of the solid is p, specific heat is g, the heat equation is

u
3t h*Véu (1)

Equation (1) is called the diffusion equation or Fourier equation of heat flow. Here

R=tok @
pa

is known as diffusivity. We know that heat flows from points at higher temperature to the points
at lower temperature and the rate of decrease of temperature at any point varies with the
direction. In other words, the amount of heat says AH crossing an element of surface AS in At
seconds is proportional to the greatest rate of decrease of the temperature u, i.e.

AH = K AS At |6u| 3
If ¥ be the velocity of heat flow given by

D=-Kgradu=—-KVu (4)

Here u(x,y, z,t) is the temperature of the solid at (x,y,z) at an instant of time ‘t" and ‘K’ the
cal
cmsec°C

thermal conductivity of the solid and its unit is

Let S be the surface of an arbitrary volume V of the solid. Then the total flux of heat flow across
S per unit time is given by
H= f f - ds
S

H=ﬂ(—1ﬁu)-ﬁds (5)

Here 71 is the vector normal to the element ds.

We have Gauss’s divergence theorem for any vector A

J:Vf (V-A)dVZJJA-ﬁdS=££A-dS

Now applying Gauss’s divergence theorem according to which if V be the volume bounded by a
closed surface S. We have the quantity of heat entering S per unit time as

ff(l(v’u)-ﬁds = fffﬁ-(lﬁu)dv (6)

S
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Taking volume element dV = dx dv dz,

the heat contained in volume V = -Uf opudV  (7)

The time rate of increase of heat is given by

%gfapuw:fvﬂapz—?w (8)

Equating R.H.S. of equation (6) and (8), we find

-Ufap—dv fffV(KVu)dV
fff[ap?—?—ﬁ-(KVu)]deO 9

But V being arbitrary hence dV # 0
ou - .
L op—=V-(KVu)=0
o0 G (k)

3 apZ—?=V-(KVu)

du K_,
3t op (u)— Viu = h?V?u = kV*u  (10)
Where h? = k = <

op

Equation (10) is also written as

62u+02u+62u_16u_16u 1
dx2  dy? 0z2 kot h2ot an

This is three-dimensional diffusion equation.

One dimensional diffusion equation:

hZa“— o%u

Prove that — .
at dx2 d0x2

Consider one dimensional flow of electricity in a long-insulated cable and specify the current i
and voltage E at any point in the cable by x —coordinate and time variable t.

The potential drop E in a line element §x of length at any point x is given by

N
_6E = iRSx + L5xa—; )
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Where R and L are respectively resistance and inductance per unit length.

If C and G be respectively capacitance and conductance per unit length, then we have

OE
—6i = GE6x + C(Sxa (2)

Divide equation (1) and (2) with éx and by rearranging the terms, we have

OF _ _OE_ . 0
ox  ox " ot
vrietZlo0 @3

P) itly=0 )
6i_ _0i_ . 0
Sx  oOx ot

di

Now differentiate equation (3) with respect to x and (4) with respect to t, we have

0%E di 0%i

a2 T Rox T g =0 ©)
azi+GaE+cazE—o 6
dxot ot at2 (6)
Or
d%i 3 GaE CGZE ;
oxot ot at2 ™)

. 9% : . .
Substitute value of ?(;t from equation (7) into equation (5), we have

— +R—+

0%E di L 0E 0%E
0x2 ox

0%E di o0E 0°E

W-l-Ra_GLE_CLW: 0
0%E _cL 0%E tGL 0E R ai g
0x2 7 ot2 ot dx ®
But from equation (4),
di GE CBE
dx ot

Therefore equation (8) becomes
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aZE_C 0%E L E R[ B CGE]
O0x2 dat? dat dat

GZE_CLGZ +GL6E+RGE+RC6E
d0x? at? Jt Jt
By rearranging the terms
aZE—CL62E+ CR+GL E+RGE 9
axz - ot 2 ( ) ( )

Now differentiate equation (3) with respect to t and (4) with respect to x, we have

0%E di 0%i

EET: +R6t+L6t2=0 (10)

Or

0’E _ Ra' Laz' A\
dxdot at  ot? (1)

L GE e PE g 1
O0x? 0x oxot (12)

2
Substitute value of% from equation (11) into equation (12), we have

62i+GaE+C Rai LaZi _ o
0x? 0x B

at 0t?2
R +G6E - 0i cL 9%i ~o
dx2 dx ot at?
0% =CL aZi+CRa GaE 13
0x2 dt2 Jt dx (13)
But from equation (3),
0E Ri— L adi
xR

Therefore equation (13) becomes

Bl _ o 2L, pl G[ Ri Lai]
oxz U or? ot ‘
0 CL02.+CR0 verivaL
x? 9¢2 ot l ot
By rearranging the terms
0% —CL62.+(CR+GL) -+ GRi (14
ox? 12 L)
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By rewriting equation (9) and (14),

azE—CLGZE+ CR + GL aE+RGE 9

ax?
o’ —CL62i+ CR + GL ai+GR' 14
ox2 =~ gt ( Jor T ORE A

Equation (9) and (14) follows that E and i satisfy a second order partial differential equation.

62”—0L62“+ R+6 4 GRu (15
axz =~ Lz )3t w (15

Which is known as telegraphy equation.
If the leakage to the ground is small then G = L = 0 and hence equation (15) reduces

0%u CRGu_lau 16
ax?2 ot kot (16)

1
Here k = —.
CR

Equation (16) is called one dimensional diffusion equation.

Both the ends of a bar at temperature zero:

If both the ends of a bar of length [ are at temperature zero and the initial temperature is to be
prescribed function F(x) in the bar, then find the temperature at a subsequent time t.

Proof: One dimensional heat equation is

ou 262u
% e @

We have to find a function u(x, t) satisfying equation (1) with the boundary conditions for t > 0
ulx,t) =u(0,t) =0 atx =0 (2)
ulx,t) =u(l,t) =0 atx =1 3)
Here ‘I’ being the length of bar, for 0 < x <[
ulx,t) =u(x,0)=F(x) att=0 (4)
In order to apply the method of separation of variables, let us assume that
u(x,t) =Xx)T) (5)

X and T being the function of x and t alone, so that
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au_XdT azu_T d*X .
at = dt’ ax? dx2 (6)

Their substitution in equation (1) gives

1d2X_ 1 dT ;
X dx2  h2T dt @)

The L.H.S. of equation (7) is space dependant and R. H. S. of equation (7) is time dependent, hence
both sides are constant equal to some constant —A2 (say). Therefore equation (7) becomes

1d2X_ 1 dT _ 2 (8
Xdx2 h2Tdt ®)

By comparing L.H.S. of equation (8) with —1%, we have

1dzx
X dx2

’X
-'-W'l'AX:O (9)

And the general solution of equation (9) is given as
X =AcosAx+ Bsinix  (10)
By comparing R.H.S. of equation (8) with —12, we have

1.dT
h2T dt

2

i dT+/12h2T—O 11
= =0 (11

The general solution of equation (11) is given as

T =Ce ¥t (12)
By using boundary condition of equation (2): u(x,t) = u(0,t) =0 atx =0
Asu=0, XT=0, -~ X =0,therefore equation (10) becomes

X =AcosAx 4+ Bsindx =2 0=Acos0+Bsin0=>A4=0
A=0 (13)

Therefore equation (10) now becomes

X =Bsinix  (14)
By using boundary condition of equation (3):at x =1 u(x,t) =u(l,t) =0, t > 0

Equation (14) becomes,
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X =Bsindx = 0 = BsinAl

ButB+#0 . sinAl=0 ~ Al =nn

nm
A:T,n=0,1,2, (15)

Therefore, solution of equation (1), u = X T takes form as:

nmx _n27r2h2t
u=XT=BsinTCe 12

And by including C into B,

nmx _nim’h’t
u=RB sinT e 2 (16)

Summing over all values of n, equation (16) becomes

[00)
nix n?m?h?t

u(x,t) = ) B, sinT L 17)

n=1
Applying condition of equation (4), at t =0, u(x,t) =u(x,0) =F(x), 0 <x <l

We have

= nix
F(x)=ansianor0<x<l (18)

n=1

To find out B,,, multiply both sides of equation (18) with sin? and integrating the result from

x =0tox =1, we have
l !
2 nmwx 2 nnu
B, =TfF(x) sinT dx =TfF(u) sinT du (19)
0 0

Hence the required solution by substituting value of equation (19) in equation (17) is
l

n?m?h?t

= (2 . nmu . onmx _nomChtt
u(x, t) =Z TfF(u)smT du smTe 12
n=1 0
By rearranging the terms,

o nPmth’t gy l nmu
Z e 1 sin—- fF(u) sin— du (20)
n=1

~| N

~u(xt) = ;i l

0

Which is the required solution.
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Two-dimensional diffusion equation:

Consider a thin rectangular plate whose surface is impervious (i.e. not permitting penetration or
passage) to heat flow and which has an arbitrary function of temperature F(x,y) att = 0, its
four edges x = 0,x = a,y = 0,y = b are kept at zero temperature. We have to determine the
subsequent temperature at a point of the plate as t increases.

Two-dimensional heat equation is written as:

O _ e |u O e @
ot - axz ayz (fora ) ( )

The boundary conditions are:

atx =0 u(x,y,t) =u(0,y,t) =0 (2)

atx=a ulx,y,t)=u(ayt)=0 (3

aty =0 u(x,y,t) =u(x,0,t) =0 (4)

aty=b u(x,y,t) =u(x,b,t) =0 (5

att =0, ulx,y,t) =u(x,y,0) =F(x,y) (6)
In order to apply the method of separation of variables, let us assume that
u@xy,t) =X Y Tr®) (7)

Here X is a function of x alone, Y is a function of y alone and T is a function of t alone, so that

ou XYdT 0%u . d?X 0°u T d?y 8
at " dt’  9x2  dx?2’  9yr T dy? ®

Substituting values of equation (8) in equation (1), we have

ou 62u+ 0%u dT d*X d?y
dx?  0dy?

- = — = h2 N -
> > XY—=h [YT o T 5

Now divide both sides of above equation with h?XYT

1dT_1d2X+1d2Y 9
R2T dt X dx? Y dy? )

In equation (9), L.H.S. is time dependent only and R.H.S. is space dependent only. Their equality

suggests that both sides equal to some constant = —A? (say). We can assume
1d2X_ 22 1d2Y_ 22 1 dT 2 (10
Xdx2 "V vdy* ¥  RTdt (10)
So that

=2+ (1)
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The general solution of equation (10) are
X =AcosAix+Bsinlix (12)
Y=Ccosd,y+ Dsind,y (13)
T =Ee MMt (14)
Therefore, solution of equation (1) i.e. equation (7) becomes
u(x,y,t) = XYT = (Acos A;x + Bsin 4;x)(C cos A,y + D sinA,y)E e~ Atn%t (15)
By using boundary condition of equation (2): at x = 0 u(x,y,t) =u(0,y,t) =0
Asu=0, XYT =0, -~ X =0,thereforeequation (12) becomes
0 =(Acos0+ Bsin0)
~A=0 (16)
Therefore equation (12) now becomes
X =Bsinlix (17)
By using boundary condition of equation (3): at x = a u(x,y,t) =u(a,y,t) =0
Equation (17) becomes,
X =Bsind;x = 0= Bsinla

ButB#0 - sinlja=0 -~ Aa=mn

mn
Al = T,m = 0, 1, 2, (18)

Similarly, by using boundary conditions of equation (4) and (5) we obtain

C=0 (19

nm
—,n=0,12. (20)

A, =
27 p

Therefore, equation (15) becomes

u(x,y,) = XYT = (Bsin,2) (D sin A,y)E e ™4

As B, D, E are constants, by merging D & E into B, above equation becomes

mnx _ nw
u(x,y,t) = Bsin sinTy e~ Ah%t (21)
2.2 2.2 2 2
From equation (11), 22 = A3 + 13 = maf nbz = r? [% Z—z] =22,
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mrr Sll‘l—n;[y e~ Amnh’t (22)

u(x,y,t) = Bsin
Summing over all possible values of m and n, the general solution: equation (22) becomes

mnx  nm
u(x,y,t) = Z B,,, e~ Amnh’t gin " smTy (23)

mn=1

Here B,,, are arbitrary constants. By applying condition of equation (6),
att =0, ulx,y,t) =u(x,vy,0) = F(x,y)

We have

. mmx _ nmy
F(x,y) =u(x,y,0) = z By Sin—— " smT (24)

mn=1

Ty

To determine B,,, we multiply both sides of equation (24) with sin% and sinnT and

integrating the result fromx = 0tox =aandy = 0toy = b we have

b b
_ 4 : F _mnx_nﬂydd_4 ; Tu ded 9t
By = p ff (x,y) sin m sin 5 x y_ab fj (uv)sm sin 5 udv (25)
00 00

Hence the complete solution by substituting value of equation (25) in equation (23) is

[ee]

a b

mu | nmv a2 p2, . MOX _ nmy

Unn (X, ¥, 1) = ff (u,v) sm ——sin—— du dv| e~*mnh"t gin " sin—-—
00

b

mn=1

By rearranging the terms,

oo ab
4 a2 p2e . MOX  NIX . mmnu _ nmv
Umn (X, 3, 1) =— Z g~ mn sin——sin—— ffF(u, v) sin smT dudv (26)
m,n=1 00

Which is the required equation.

The wave equation:
Derivation of one-dimensional wave equation:

Consider a flexible string of length [ tightly stretched between two points x = 0 and x = [ on
X — axis. If the string is set into small transverse vibrations, the displacement u(x, t) from the
X — axis of any point x of the string at any time t is given by

e S €
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Where c¢? = %, where T being tension and p the linear density. Equation (1) is called one

dimensional wave equation.

Let the string (assumed to be perfectly flexible) of length [ tightly stretched between the points
x = 0and x = [ on X — axis be distorted and then at a certain instant of time say t = 0, it is
released and allowed to vibrate. To determine its deflection (displacement from the X — axis) at
any point x at any time ¢, let us take the following assumptions:

(i) The string is uniform. i.e. its mass m per unit length is constant.

(ii)  The string is perfectly elastic so offer no resistance to any bending.

(iii)  The tension T is so Large that the action of gravitational force on the string is negligible.
(iv)  The motion of the string is a small transverse vibration in a vertical plane.

Consider the motion of an element PQ of length s of the string. The string being perfectly
elastic, hence tension T at P and T, at Q are tangential to the curve of the string. Let T; and T,
make angle a and S respectively with the horizontal.

There being no motion in the horizontal direction, we have
Ticosa =T,cosf =T = constant (2)
mass of the element PQ = p s (3)

By Newton'’s second law of motion (F = ma), we have

2
T,sinf —T;sina = (p 55)6—;; 4

Now divide equation (4) with equation (2), we have

T,sinf T;sina (p 65) 0%u

T,cosf T,cosa \ T /ot2
p &8s 0%u
tanB—tana:TF (5)

Replacing ds by &x since the gradient of the curve is very small equation (5) becomes

(6u> (0u> _pdsd’u_pdx 0*u
x+ 6x x

ox ox T oz T oz ©

Since tan o and tan §§ are slopes at x and x + &x respectively.

(g_z)x+ 5x - (g_;)x _ p 0*u

5x T at?

i.e.

Uy (x + 6x,t) —uy(x,t)  p 0%u
5x T 0t?
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By taking the limit x — 0, we get

0°u _pd*u 1 d%*u ;
dx2 T 9t2 c? ot? ™

Or

1
Where = = £
c T

Which is required expression.

Derivation of two-dimensional wave equation:
Consider a rectangular membrane, for which the two-dimensional wave equation is written as

azu_ 5 02u+02u )
atz  ~ [ox2 " ay? M

Consider the motion of a stretched membrane supposed to be stretched and fixed along its entire
boundary in the X — Y plane. Let us take the following assumptions.

(i) The membrane is homogeneous. i.e. mass p per unit area is constant.

(ii)  The membrane is perfectly flexible and so thin that it offers no resistance to any bending.

(iii) The tension T per unit length caused by the stretching of the membrane is invariant
during the motion. It retains the same value at each of its points and in all the directions.

(iv)  The deflection u(x, y, t) of the membrane during the motion is negligible as compared to
the size of the membrane. Also, all the angles of inclination are small.

consider the motion of an element ABCD of the membrane. Let its area be §xdy. The tension per
unit length is T, the force acting on the edges are Téx and Téy approximately. Also, the
membrane being perfectly flexible, the tension Téx and Tdy are tangential to the membrane. Let
a, B be the inclinations of these tensions with the horizontal. Then the horizontal components of
these forces are Tdycosa and TdycosfS. When a & [ are small, cosa — 1 and cosf§ = 1 so
that Téycosa = Ty and Téycosf — Tdy. i.e. the horizontal components of the forces at
opposite edges are nearly equal and hence the motion of the particles of the membrane in
horizontal direction is negligibly small. We assume that every particle of the membrane moves
vertically.

The resultant vertical force = Tdy sin§ — Ty sina
=Téy(sin B — sina)
(* a,f beingsmallsina = ¢ =tanaandsinff =  =tanf)

The resultant vertical force = Téy(tan f — tan )

Dr. P. S. Vyas, Physics Department, VP & RPTP Science College 52



USO5CPHY?22 Unit 3 Fourier Series, Diffusion Equation and Wave Equation
= Téy[uy(x + 6x,y1) —ux(x,¥2)]  (2)

Where u, is the partial derivative w. r. t. x and y,, y, are the values of y between y and y + 6y.
Similarly, the resultant vertical force acting on the other two edges

= T6x[uy (x1,y + 8y) —uy (25,9  (3)
Where u,, is the partial derivative w.r. t.y and x4, x, are the values of x between x and x + dx.
By Newton'’s second law of motion, we have Total vertical force on the element

F = ma) = p 6x 6y %
( _ma)_p X yatz

0%u
i.e. TY[u,(x + 6x,y1) — ue(x, ¥2)1 + Tox[uy (x1,y + 6y ) — uy(x2, )| = p 6x 6yw

%u . .
Here 6_15121 is the acceleration of the element. Thus

T
+ J—
otz  p bx

9%u _ Tlux(x+ 8x,y1) —uxlx, }’2)]
p

Uy (x,y + 6y) —uy(x2,)
Sy

By taking limits 6x — 0 and §y — 0, we have

0’u T ,[0%u  0%u
7z = Sl tuy| = o5+
0%u
57 = c2Viu (4
2 62 62
Where V-= Py + 37

This is two-dimensional wave equation.
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